CPS393 Summary Part 1: Unix/Linux

Week 1
cat fl display f1 content on stdout
tac f1l display f1 content on stdout, backward
more f1 paginates fl
less f1 paginates, allows forward and backward movement
mkdir, rmdir, make a directory, remove a directory (empty only), copy, move (works for renaming)
cp, mv
wc size information: word count, line count, etc
chmod change mode (of a file or dir)
chmod +x f1 ## adds execute option for everyone
chmod uo+w f1 ## adds write option for user (owner) and other
chmod uo=r f1 ## sets user (owner) and other only to read
chmod 160 f1 ## sets user to 1 (--x), group to 6 (rw-), other to 0 (---)
stdout and > f1 changes output to create/overwrite fl
stderr >> f1 changes output to create/append fl
2>/dev/null changes any error outputs to not display at all
Week 2

shell patterns

2, *

’ ’ etc

[eee]s

regex patterns in shell

must use shopt -s extglob

*(exp) 0 or more

+(exp) 1 or more

?(exp) O or 1

@(expl|exp2|...) 1l or 2 or

! (exp) anything that doesn't match exp

regular expressions

. any char
* 0 or more of previous char

~ beginning of line

S end of line

[any char inside brackets (like glob)
[

any char not inside brackets (depends on the machine)
[t.e..] any char not inside brackets (depends on the machine)

$@ is the arguments as 1 string;

\{m\} exactly m repetitions of previous char
\{m,\} at least m reps of prev char
\{m,n\} from m to n reps of prev char
\< beginning of word
\> end of word
script arguments $0 = name of shell pgm; $1-$n = ordered arguments; $# is number of args passed in;

$* lists the args separately

grep prints lines matching a pattern

find find -type f -empty ## . is the location (local dir)

head, tail head -1 #gets top 1 row; tail -1 #gets last 1 rows

Week 3

tr tr -s ' ' ' ' ## squeezes multiple spaces to one space

sed sed -e “s/unix/UNIX/” myfile ## -e says use the following cmd, myfile is the file to
read, but output to stdout; only changes first occurrence
sed -e “s/unix/UNIX/g” myfile ## the g changes multiple occurrences
sed can use regex

sort sorts!

cut cut -c8 myfile ## output 8" column of each line of myfile
cut -c5-7,25- ## outputs columns 5, 6, 7, 25-> of each line of stdin
cut -f2 ## outputs the 2™ field of stdin
cut -d' ' -f3 ## outputs field 3, fields delimited by one space

paste f1 f2 “joins” tab-separated columns of fl with tab-separated col's of £f2

pipe | and tee

foreground/background while in foreground process, hit CTRL-Z to suspend
processes jobs: shows current processes

fg %1 puts 1 in foreground

bg %1 puts 1 in background

kill %1 kills 1

kill 2498 kills by process id (find using ps)
ps show processes

ps -u shows user ids too

Command History

[N re-execute last cmd

!-n re-execute last command minus n
lcmd re-execute last command that started with string cmd
history 1list last 16 commands

lynx

lynx -dump www.google.com
lynx www.google.com

dumps the webpage rendered as text
tries the diplay the text webpage for use

CPS393 Summary Part 1: Unix/Linux

Week 4

Environment env; echo “$PWD”

Variables

Local Variables typeset -i X=123; unset x
a=$(ls -1 | grep “foo” | head -1s)

Quoting, backslash |single quote is more “powerful”, double quotes allow special chars to be evaluated inside;
backslash protects the one following char (Also can be used to split single commands to multi-
lines)

back-quote back-quotes execute the command inside (so does $(foo_command))

test checks a file for readable -r, writable -w, executable -x, is a file -f, is a directory -d
compares 2 strings or ints for >, <, =
test “abc” = “abc”
test 123 -eq 123
can do AND, OR, NOT logic

expr Evaluates arguments and returns true or false

&& cmdl && cmd2 ##execute cmd2 if cmdl returns true

|| cmdl || cmd2 ## execute cmd2 if cmdl returns false

if if [55 -gt 40]; then echo “55 is grt than 40”; else echo “less than”; fi
if test -f fnl;
then...; else...; fi
if [““grep $1 f1 "]; then echo “the value $1 was found in f1l; fi

-- note that back-quotes must be used to evaluate grep, etc
case mnth="date +%m~ #formats date as mm
case ${mnth} in
01|Jan|January)
echo “jan”
i
02 |Feb|February)
echo “feb”
. i
echo “whatever”
i
esac
case “expr ${count} \< 100~ in
1) echo ${count} is less than 100;;
0) echo ${count} is more than 99
esac

for for var in vall val2 val3....

do
do something with var
done

while while [...]
do

do something
done

read read entireline < fl ## reads first line from f1
read wordl wordl rest < f1l ## reads first word into word, etc
example of how to read through each line in a file
unfortunately this piping into a while statement creates a sub-scope
which means that variables set inside the loop are not still set on the other side
cat f1 | \
while read line
do

do something with line
done
Week 5

bash -v ./pgm -v displays the pgm code before execution

bash -x ./pgm -x displays the pgm code with values before exec

shift shifts all arguments down one ($1 gets value from $2, $2 gets value from $3, etc)

xargs performs a command on a group of things from stdin

find . -name “f*” | xargs grep bash ## prints lines from files f* that contain the string
bash

functions repeat_it () {

echo $1

}

repeat_it “foo” ## prints “foo”
arguments

eval

