
CPS393 Summary Part 1: Unix/Linux

Week 1

cat f1 display f1 content on stdout

tac f1 display f1 content on stdout, backward

more f1 paginates f1

less f1 paginates, allows forward and backward movement

mkdir, rmdir,
cp, mv

make a directory, remove a directory (empty only), copy, move (works for renaming)

wc size information: word count, line count, etc

chmod change mode (of a file or dir)
chmod +x f1 ## adds execute option for everyone
chmod uo+w f1 ## adds write option for user (owner) and other
chmod uo=r f1 ## sets user (owner) and other only to read
chmod 160 f1 ## sets user to 1 (--x), group to 6 (rw-), other to 0 (---)

stdout and
stderr

> f1 changes output to create/overwrite f1
>> f1 changes output to create/append f1
2>/dev/null changes any error outputs to not display at all

Week 2
shell patterns ?, *, [...], etc

regex patterns in shell must use shopt -s extglob
*(exp) 0 or more
+(exp) 1 or more
?(exp) 0 or 1
@(exp1|exp2|...) 1 or 2 or
!(exp) anything that doesn't match exp

regular expressions . any char
* 0 or more of previous char
^ beginning of line
$ end of line
[...] any char inside brackets (like glob)
[^...] any char not inside brackets (depends on the machine)
[!...] any char not inside brackets (depends on the machine)
\{m\} exactly m repetitions of previous char
\{m,\} at least m reps of prev char
\{m,n\} from m to n reps of prev char
\< beginning of word
\> end of word

script arguments $0 = name of shell pgm; $1-$n = ordered arguments; $# is number of args passed in;
$@ is the arguments as 1 string; $* lists the args separately

grep prints lines matching a pattern

find find . -type f -empty ## . is the location (local dir)

head, tail head -1 #gets top 1 row; tail -1 #gets last 1 rows

Week 3
tr tr -s ' ' ' ' ## squeezes multiple spaces to one space

sed sed -e “s/unix/UNIX/” myfile ## -e says use the following cmd, myfile is the file to
read, but output to stdout; only changes first occurrence

sed -e “s/unix/UNIX/g” myfile ## the g changes multiple occurrences

sed can use regex

sort sorts!

cut cut -c8 myfile ## output 8th column of each line of myfile
cut -c5-7,25- ## outputs columns 5, 6, 7, 25-> of each line of stdin
cut -f2 ## outputs the 2nd field of stdin
cut -d' ' -f3 ## outputs field 3, fields delimited by one space

paste f1 f2 “joins” tab-separated columns of f1 with tab-separated col's of f2

pipe | and tee

foreground/background
processes

while in foreground process, hit CTRL-Z to suspend
jobs: shows current processes
fg %1 puts 1 in foreground
bg %1 puts 1 in background
kill %1 kills 1
kill 2498 kills by process id (find using ps)

ps show processes
ps -u shows user ids too

Command History !! re-execute last cmd
!-n re-execute last command minus n
!cmd re-execute last command that started with string cmd
history list last 16 commands

lynx lynx -dump www.google.com ## dumps the webpage rendered as text
lynx www.google.com ## tries the diplay the text webpage for use

CPS393 Summary Part 1: Unix/Linux

Week 4
Environment
Variables

env; echo “$PWD”

Local Variables typeset -i X=123; unset x
a=$(ls -l | grep “foo” | head -1s)

Quoting, backslash single quote is more “powerful”, double quotes allow special chars to be evaluated inside;
backslash protects the one following char (Also can be used to split single commands to multi-
lines)

back-quote back-quotes execute the command inside (so does $(foo_command))

test checks a file for readable -r, writable -w, executable -x, is a file -f, is a directory -d
compares 2 strings or ints for >, <, =
test “abc” = “abc”
test 123 -eq 123
can do AND, OR, NOT logic

expr Evaluates arguments and returns true or false

&& cmd1 && cmd2 ##execute cmd2 if cmd1 returns true

|| cmd1 || cmd2 ## execute cmd2 if cmd1 returns false

if if [55 -gt 40]; then echo “55 is grt than 40”; else echo “less than”; fi
if test -f fn1;
then...; else...; fi
if [“`grep $1 f1`”]; then echo “the value $1 was found in f1; fi
 -- note that back-quotes must be used to evaluate grep, etc

case mnth=`date +%m` #formats date as mm
case ${mnth} in
 01|Jan|January)
 echo “jan”
 ;;
 02|Feb|February)
 echo “feb”
 ;;
 *)
 echo “whatever”
 ;;
esac
case `expr ${count} \< 100` in

1) echo ${count} is less than 100;;
0) echo ${count} is more than 99

esac

for for var in val1 val2 val3....
do
 ### do something with var
done

while while [...]
do
 ### do something
done

read read entireline < f1 ## reads first line from f1
read word1 word1 rest < f1 ## reads first word into word, etc
example of how to read through each line in a file
unfortunately this piping into a while statement creates a sub-scope
which means that variables set inside the loop are not still set on the other side
cat f1 | \
while read line
do
 ### do something with line
done

Week 5

bash -v ./pgm
bash -x ./pgm

-v displays the pgm code before execution
-x displays the pgm code with values before exec

shift shifts all arguments down one ($1 gets value from $2, $2 gets value from $3, etc)

xargs performs a command on a group of things from stdin
find . -name “f*” | xargs grep bash ## prints lines from files f* that contain the string
bash

functions repeat_it () {
echo $1
}

repeat_it “foo” ## prints “foo”

arguments

eval

